Scilab - podstawy

Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (*Institut Nationale de Recherche en Informatique et Automatique*). Jest programem podobnym do MATLABa oraz jego darmowego 'klonu' OCTAVE'a.

Scilab jest samodzielnym programem zawierającym wiele wbudowanych funkcji numerycznych oraz graficznych. Jest wyposażony w język programowania.

Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony http://www.scilab.org. Również na tej stronie znajdują się linki do dokumentacji. Wpisując w wyszukiwarkę na przykład słowa "Scilab tutorial" można znaleźć linki do różnego rodzaju podręczników i wykładów wprowadzających do Scilaba.

Wprowadzenie do Scilaba: http://www.scilab.org/content/download/1754/19024/file/introscilab.pdf

Wprowadzenie do Scilaba: http://www.iecn.u-nancy.fr/~szulc/docpl.pdf

Help - uzyskiwanie pomocy

- help polecenie, np. help sin
- apropos polecenie wyświetla informacje związane z danym poleceniem
- Na stronie http://www.scilab.org/product/man

Okna

Konsola Scilab Edytor Scilab (wywołanie: Applications/SciNotes) ? - Help (Przeglądarka pomocy)

Na dobry początek – wykresy funkcji

Elementy procedury tworzenia wykresu:

- utworzenie ciągu wartości 'x-ów'
- utworzenie ciągu wartości 'y-ków'
- rysowanie
- zapisanie rysunku do pliku graficznego

Wartości 'x-ów':

```
x=[0,1,2,3,4,5,5.5,10,20]'; - ciąg wartości
x=(-10:0.1:10)';
(wartość początkowa : krok : wartość końcowa)
x=linspace(0, 3.141592, 20);
(wartość początkowa, wartość końcowa, ile wartości)
```

Uwagi:

; na końcu sprawia, że tworzone wartości nie są wypisywane na konsoli;

' zostanie wyjaśnione później;

jako wartość π można wpisać **%pi**, czyli: x=linspace(0,%pi,20).

Wartości 'y-ków' – przykłady:

Uwaga: określenie 'y-ki' jest symboliczne; tworzony obiekt może mieć dowolną nazwę. y=x;

```
y1=2*x;
z=2*x-1;
fun=sin(x)+cos(2*x);
y2=x^3
g=tan(x)^2;
Znak ^ oznacza potęgowanie.
Można wykorzystywać wcześniej zdefiniowane wartości:
y3=y1+y2;
Luwaga: Wczystkie, podene wyżej wyrożenie dotyczyty, operacji wykonywanych na cji
uwkonywanych na cji
```

Uwaga: Wszystkie podane wyżej wyrażenia dotyczyły operacji wykonywanych na *ciągu wartości* określonych wspólną nazwą x. Wynikiem jest też ciąg wartości.

Uwaga: działanie (przykładowe) z=x*x spowoduje pojawienie sie komunikatu o błędzie. Przyczyna zostanie wyjaśniona później. Na razie zastąpmy to wyrażenie wyrażeniem: $z=x^2$.

Rysowanie – funkcja plot

plot(x,y)

Pierwszy przykład:

```
x=linspace (0, %pi, 50);
y=sin(x);
plot (x,y);
yl=cos(2*x);
plot(x,y1);
xgrid();
```


Zapisanie rysunku do pliku:

W oknie graficznym (interakcyjnie): Plik / eksportuj do / ... wybrać typ pliku (PNG, GIF, JPG,...), podać nazwę pliku

Poprzez wpisanie w oknie konsoli odpowiedniego polecenia, np: xs2png (numer_okna_graficznego, `nazwa_pliku.png')

Uwagi:

numer_okna_graficznego – jest wyświetlony w pasku tytułowym okna. Standardowo pierwsze utworzone okno ma numer 0.

Scilab wyróżnia katalog bieżący (Plik/ Wyświetl katalog bieżący). O ile nazwa pliku nie zostanie poprzedzona ścieżką dostępu, plik zostanie zapisany w katalogu bieżącym. Zmiana katalogu bieżącego: Plik/ Zmiana bieżącego katalogu...)

Inne formaty plików graficznych, to (między innymi):

eps – funkcja **xs2eps**, postscript – **xs2ps**, pdf – **xs2pdf**, gif – **xs2gif**, jpg – **xs2jpg**.

Więcej informacji o tworzeniu wykresów:

Kolejne polecenia 'plot' powodują dodanie ('dorysowanie') kolejnego wykresu do bieżącego okna.

Operacje na oknach:

clf() – wyczyszczenie bieżącego okna.

clf(1) – wyczyszczenie okna nr 1.

scf(1) – utworzenie okna o numerze 1.

xdel() – usunięcie bieżącego okna.

xdel(1) – usunięcie okna o numerze 1.

Kilka wykresów 'na raz':

plot (x,y,x,y1);

Uwaga: w związku z tym można na jednym rysunku umieszczać wykresy zdefiniowane dla różnych zakresów lub 'gęstości' x-ów.

Kolory są ustalane automatycznie. Poprzez odpowiednie zdefiniowanie parametrów można sterować zarówno kolorami, jak i rodzajem linii oraz markerów; porównajmy z poprzednim wykresem:

Kolory:

110101			
symbol	kolor	plot(x,y,'r',x1,y1,'r',x2,y2);	
r	czerwony		
a	zielony		
b	niebieski		
C	cyjan		
m	magenta		
У	żółty	-0.4	
k	czarny	-0.0	
W	biały		

Style wykreślania linii:

plot(x,y,'-'); – linia ciągła (domyślnie) plot(x,y,'- -'); –linia przerywana plot(x,y,':'); – linia kropkowana plot(x,y,'-.'); – linia kreskowo-kropkowa

Znaczniki:

Symbol	znacznik	Symbol	znacznik
+	plus	^	
0	kółko	v	▼
*	gwiazdka	>	
•	kropka	<	
x	krzyżyk	yżyk 'pentagram'	gwiazda
			pięciorannenna
'square' lub 's'	kwadracik	'none'	brak znacznika -
'diamond' lub 'd'	\diamond		domyślnie

Uwaga: Domyślnie znaczniki nie są rysowane. Jeśli wskaże się tylko znacznik, to trzeba jawnie podać symbol stylu wykreślania linii. W przeciwnym przypadku wykres nie będzie zawierał linii.

Opisywanie wykresów: tytuł, opisy osi, legenda

title ('Tytul wykresu'); xtitle('Tytul wykresu','opis osi x-ow','opis osi pionowej'); legend ('opis 1. funkcji', 'opis 2. funkcji', 'opis 3. funkcji'); Wszystkie opisy odnoszą się do bieżącego okna.

Uwaga: Legendę można uzupełnić o informację o jej położeniu na rysunku poprzez podanie na końcu opcjonalnego parametru. Domyślnym położeniem legendy jest prawy górny róg. Polecenie:

legend ('opis 1. funkcji', 'opis 2. funkcji', 'opis 3. funkcji',4); spowoduje umieszczenie legendy w lewym dolnym rogu. Przykładowe inne możliwości – można podawać albo opis liczbowy, albo opis słowny (w apostrofach):

1 lub "in_upper_right" – prawy górny róg, przyjmowane domyślnie

2 lub "in_upper_left" – lewy górny róg

3 lub "in_lower_left" – lewy dolny róg

4 lub "in_lower_right" – prawy dolny róg

5 lub "by_coordinates" – położenie legendy zdefiniowanie za pomocą myszki w oknie graficznym.

Kilka rozłącznych wykresów w jednym oknie – subplot

Przykład 4 wykresów rozmieszczonych w 2 kolumnach i 2 wierszach.

Zadania:

Narysować wykresy funkcji: 1+x, 1+x+ x^2 , 1+ x^2 + x^3 , 1+ x^2 + x^3 + x^4 w przedziale [-1, 1]

Narysować wykresy funkcji:

 $\tan(x)$, $\tan(x) - 1/3\tan^3(x)$, $\tan(x) - 1/3\tan^3(x) + 1/5\tan^5(x)$ w przedziale $[-\pi/4, \pi/4]$

Narysować wykresy funkcji:

y = x, $y1 = x - 1/3 x^3$, $y2 = x - 1/3 x^3 + 1/5 x^5$, $y3 = x - 1/3 x^3 + 1/5 x^5 - 1/7 x^7$ w przedziale [-1, 1].